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Actuarial modeling

Actuarial modeling

We start with a car insurance pricing problem.

This initial example will mostly be empirical.

It considers the familiar French motor third party liability (MTPL)
claims dataset freMTPL2freq of Dutang, Charpentier and Gallic
(2024).

Generally, raw data needs data cleaning, e.g., correcting for data errors,
inputting missing values, merging partial information, etc. The data
presented below has already been cleaned; for details see Appendix B
in Wüthrich and Merz (2023).
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Actuarial modeling

Load and illustrate the French MTPL data

load(file="../Data/freMTPL2freqClean.rda")
dat <- freMTPL2freqClean
head(dat[,c(1:11,13)])

The (cleaned) data contains the following variables:
‘IDpol’ is a unique policy identifier
‘Exposure’ is the time exposure (in yearly units)
‘Area’ is an area code (ordinal categorical)
‘VehPower’ is the power of the vehicle
‘VehAge’ is the age of the vehicle
‘DrivAge’ is the age of the policyholder
‘BonusMalus’ is the bonus-malus level of the policyholder
‘VehBrand’ indicates the vehicle brand (categorical)
‘VehGas’ indicates the gasoline type (categorical)
‘Density’ is the population density at the living place of the policyholder
‘Region’ gives the French department of the license plate (categorical)
‘ClaimNb’ gives the observed number of claims
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Actuarial modeling

IDpol Exposure Area VehPower VehAge DrivAge BonusMalus VehBrand VehGas
1 4156370 0.06 D 6 6 20 100 B2 Regular
2 4006798 0.29 E 6 7 29 59 B12 Diesel
3 6084964 0.46 C 7 10 27 68 B1 Diesel
4 2228865 0.08 D 4 15 34 50 B2 Regular
5 4141911 1.00 A 5 22 44 50 B3 Diesel
6 1103292 0.60 C 5 2 25 90 B5 Regular
Density Region ClaimNb

1 525 R82 0
2 2498 R72 0
3 123 R82 0
4 1109 R24 0
5 34 R72 0
6 129 R41 0

For simplicity, we focus on the claims counts ‘ClaimNb’; there would also be
data available with claim amounts.
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Actuarial modeling

Claims count modeling and frequencies

The above portfolio has n = 678, 007 insurance policyholders
i ∈ {1, . . . , n}.

These policyholders are characterized by covariates X i describing their
policy features such as the age of the car or the vehicle brand.

For each policyholder we have observed their numbers of claims Ni ≥ 0
within the given calendar year.

The time exposures vi ∈ (0, 1] give the proportions of the calendar year
during which the policies have been active (exposed).

To account for the different time exposures, one typically studies the
claims frequencies

Yi = Ni/vi .
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Actuarial modeling

The general goal of actuaries is to predict the (future) claims
frequencies Yi as accurately as possible.

These predictions take into account all available/relevant policyholder
information X i , as this information may reveal structural differences in
their propensity to claims.

Predictors are typically computed by conditional means

µ(X i) = E [Yi |X i ] .

E[Yi |X i ] is the expected claim of a policyholder with covariates X i .
X 7→ µ(X) models these expected claims as a regression function of the
policyholder covariates X .

For actuarial pricing, one aims to find an accurate regression function

X 7→ µ(X).
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Actuarial modeling

Regression modeling

In general, the true data generating model is unknown.

Therefore, one cannot compute the regression function X 7→ µ(X), but
one rather needs to estimate it from past data

L = (Yi , X i , vi)n
i=1 .

L is called learning sample because it is used to learn the unknown
regression function X 7→ µ(X).

Before solving this estimation/learning problem, we empirically study
the available data L = (Yi , X i , vi)n

i=1. This is crucial to fully
understand the problem and to select a suitable class of candidate
regression models.
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Empirical data analysis

Empirical data analysis

Before trying to find an appropriate regression function X 7→ µ(X), we
empirically analyze the learning sample L.

Such an empirical analysis of the learning sample L includes different
sample statistics as well as visualizations of the data.

For simplicity, we only consider two covariates in this preliminary
analysis: ‘DrivAge’ and ‘Density’. In later examples, all covariates are
considered.

We start by classifying the policies w.r.t. their numbers of claims.

library(arrow)
library(tidyverse)
#
dat %>% group_by(ClaimNb) %>% summarize(Exposure = sum(Exposure))
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Empirical data analysis

ClaimNb Exposure
1 0 341090
2 1 16315
3 2 909
4 3 42
5 4 2
6 5 1

The above table shows that the majority of insurance policies does not
suffer any claims.

The empirical claims frequency is ∑n
i=1 Ni/

∑n
i=1 vi = 7.36%.

In machine learning, this is called a class imbalance problem.

In actuarial modeling, this is just the typical problem actuaries have to
solve, i.e., actuaries try to find systematic structure in data in which
claims are rare events.
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Empirical data analysis
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(lhs): class imbalance problem mentioned above.

(rhs): distribution of the exposures (vi)n
i=1, roughly 25% of the policies

have a full-year exposure vi = 1 in this data.
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Empirical data analysis
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Empirical data analysis
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Empirical data analysis

The previous plots show the marginal distributions of the claims.

Generally, covariates interact so that one cannot simply multiply
marginal observations to receive the correct prices.

E.g.: Young drivers may all live in the highly-populated cities, and the
high frequencies at younger ages and in densely populated areas are
driven by the same risk factor. Multiplying marginals will, thus, result
in a double penalty of the same risk factor.

For this reason, we need to understand the multivariate picture to
receive a good pricing functional X 7→ µ(X).

I.e., we need to estimate µ(X) jointly in the two components of
X = (X1, X2)⊤, and not marginally.
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Empirical data analysis
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Empirical data analysis

The above heatmap shows the empirical frequency as a function of the
two covariates ‘DrivAge’ and ‘log-Density’.

The empirical data has been smoothed with the kernel smoothing
method called ‘loess’ (locally estimated scatterplot smoothing).

The colored dots show the loess results in the covariate combinations
that exist in our portfolio, and the white space corresponds to covariate
combinations that are not available in our portfolio.

The coloring shows quite some non-linear structure in the covariate
components.
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A generalized linear model example

A generalized linear model example

We start with a generalized linear model (GLM) for the regression
functional X 7→ µ(X).

The underlying mathematical theory is going to be presented in careful
detail in later notebooks.

The most simple GLM setting is

X 7→ µ(X) = exp (β0 + β1X1 + β2X2) ,

for X = (X1, X2) = (DrivAge, log-Density) and parameter (β0, β1, β2).

### Model GLM 1 (Poisson for counts with offsets)

d.glm1 <- glm(ClaimNb ~ DrivAge + lDensity, data=dat,
offset=log(Exposure), family=poisson())↪→

#
dat$GLM1 <- fitted(d.glm1)
summary(d.glm1)
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A generalized linear model example

Call:
glm(formula = ClaimNb ~ DrivAge + lDensity, family = poisson(),

data = dat1, offset = log(Exposure))

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.7811529 0.0298084 -93.30 <2e-16 ***
DrivAge -0.0097160 0.0004414 -22.01 <2e-16 ***
lDensity 0.1023950 0.0032929 31.10 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 9169.3 on 5988 degrees of freedom
Residual deviance: 7647.9 on 5986 degrees of freedom
AIC: 22487

Number of Fisher Scoring iterations: 5
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A generalized linear model example
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Obviously, the driver’s age variable does not fit the observed data, as
this GLM is not able to model the non-monotone structure.
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A generalized linear model example
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The heatmap confirms that this GLM is not able to reflect the
observed data.
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A generalized linear model example

Usually, in case of non-monotone behavior, one builds categorical
classes.

We build age classes as follows (which are then implemented by
dummy coding).

### Model GLM 2

dat$DrivAgeGLM <- as.factor(cut(dat$DrivAge,
c(18,20,25,30,40,50,70,101), labels = c("18-20", "21-25", "26-30",
"31-40", "41-50", "51-70", "71+"), include.lowest = TRUE))

↪→

↪→

#
# Poisson GLM with (canonical) log-link
d.glm2 <- glm(ClaimNb ~ DrivAgeGLM + lDensity, data=dat,

offset=log(Exposure), family=poisson())↪→

#
dat$GLM2 <- fitted(d.glm2)

This estimates an individual regression parameter βj for each age class.
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A generalized linear model example

Call:
glm(formula = ClaimNb ~ DrivAgeGLM + lDensity, family = poisson(),

data = dat1, offset = log(Exposure))

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.047914 0.044931 -45.58 <2e-16 ***
DrivAgeGLM21-25 -0.627963 0.046706 -13.45 <2e-16 ***
DrivAgeGLM26-30 -1.109290 0.045196 -24.54 <2e-16 ***
DrivAgeGLM31-40 -1.261688 0.042354 -29.79 <2e-16 ***
DrivAgeGLM41-50 -1.165688 0.042086 -27.70 <2e-16 ***
DrivAgeGLM51-70 -1.298062 0.041879 -31.00 <2e-16 ***
DrivAgeGLM71+ -1.380917 0.047348 -29.16 <2e-16 ***
lDensity 0.104394 0.003301 31.62 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 9169.3 on 5988 degrees of freedom
Residual deviance: 6858.0 on 5981 degrees of freedom
AIC: 21707

Number of Fisher Scoring iterations: 5
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A generalized linear model example
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This second GLM with categorical age classes fits the data better.

Because of the log-link choice, it has a multiplicative structure.
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A generalized linear model example
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This second GLM does not (easily) allow for diagonal structure. This is
a motivation to consider more advanced regression models.
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Gradient boosting machine

Gradient boosting machine

As a preliminary machine learning regression model, we present a
gradient boosting machine (GBM).

GBMs belong to the most powerful techniques on tabular data.

A GBM partitions the covariate space into different (homogeneous)
subsets and it estimates the frequency on each subset.

We only present the resulting heatmap on the two selected covariates,
and for technical details we refer to the GBM notebook.
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Gradient boosting machine
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Gradient boosting machine

We observe that the GBM reflects the observed (smoothed) data very
well.

The only criticism that one may have is that the resulting regression
function is not smooth and that it cannot easily be extrapolated.

A crucial question that one may have is whether this GBM only
extracts the structural (systematic) part or whether it also reflects
some of the noise in the observed data. This would not be good,
because the noisy part is not structure that will replicate in the future.

This question of in-sample over-fitting is recurrent to all statistical and
machine learning methods, and it will be discussed in detail below.

We are now ready to take off this process of statistical modeling and
machine learning.
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Copyright

Copyright

© The Authors

This notebook and these slides are part of the project “AI Tools for
Actuaries”. The lecture notes can be downloaded from:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5162304

This material is provided to reusers to distribute, remix, adapt, and
build upon the material in any medium or format for noncommercial
purposes only, and only so long as attribution and credit is given to the
original authors and source, and if you indicate if changes were made.
This aligns with the Creative Commons Attribution 4.0 International
License CC BY-NC.
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